• Published Issues

    OpenAccess
    • List of Articles Mineralogy

      • Open Access Article

        1 - Diagenesis, microfacies and determination of original carbonate mineralogy of the Asmari Formation in the southern flank of Rig anticline
         Kakemem hamid mirmohammadsadeghi
        The aim of this study is to recognize diagenetic processes, microfacies and geochemical evidence for original carbonate mineralogy of Oligocene- Miocene Asmari limestone deposited in the Rig anticline at Rig mountain oil field. In this area, the Asmari Formation with a More
        The aim of this study is to recognize diagenetic processes, microfacies and geochemical evidence for original carbonate mineralogy of Oligocene- Miocene Asmari limestone deposited in the Rig anticline at Rig mountain oil field. In this area, the Asmari Formation with a thickness of 364 m have been exposed as a sequence of thin, medium, thick, and massive carbonate rocks. Twelve microfacies types have been distinguished on the basis of depositional textures, petrographic analysis and fauna. These carbonate microfacies belong to four major sub-environments including tidal flat, lagoon, bar/ shoal, and open marine. Absence of turbidite deposits, reefal belt and gradual changes in facies indicated that the Asmari Formation was deposited in a homoclinal carbonate ramp environment. The main diagenetic processes includes: dolomitization, cementation, micritization, dissolution, and compaction. Petrographic evidence and variation of major and minor element and compare this information with modern aragonite warm water and calcitic cool to cold temperate carbonate and originally aragonite mineralogy of Ordovician sub-tropical carbonate, the calcite mineralogy of Permian sub-polar cold water of Tasmania, the Upper Jurassic aragonite Mozduran limestone, the Ilam carbonate formation, and the Fahliyan Formation indicate that original carbonate mineralogy was aragonite in the Asmari Formation. High Sr/Na ratio suggests original aragonite mineralogy. Variation of Sr and Na values versus Mn confirm replacement of aragonite by calcite during the two stages of diagenetic stabilization. The bivariate plot of Sr/Ca versus Mn shows that Asmari limestone have been influenced by meteoric diagenesis in a closed to semi-closed diagenetic system. Manuscript profile
      • Open Access Article

        2 - Mineralogy, geochemistry and genesis of the Shirinabad clay-bauxite deposit, south-east of Gorgan
          Zahra Moridi
        The Shirinabad clay-bauxite deposit with more than 1 km long and about 8 m in thickness is located in 60 km south-east of Gorgan. The Shirinabad deposit has been developed as a stratiform horizon along the contact zone of Triassic dolomitic limestones and Jurassic sh More
        The Shirinabad clay-bauxite deposit with more than 1 km long and about 8 m in thickness is located in 60 km south-east of Gorgan. The Shirinabad deposit has been developed as a stratiform horizon along the contact zone of Triassic dolomitic limestones and Jurassic shales and sandstones. The basal contact zone of the horizon is mainly undulatory, whereas the upper contact zone is concordant with the hanging-wall shales and sandstones. The rocks within the horizon show pelitomorphic, microgranular, oolitic and pisolitic textures. Textural analysis indicates both allochthonous and autochtonous origins for the Shirinabad deposit. Based on textural and mineralogical evidences the deposit can be divided into four distinct units. Kaolinite, anatase, routile, bohemite, hematite, goethite and berthierine are the principal constituents. From geochemical data, it is concluded that the Shirinabad deposit probably originated from basaltic volcanic rocks. Combination of mineralogical and geochemical data shows that the Shirinabad deposit formed in two stages. First, bauxite materials and clay minerals were developed as authigenic bauxitization processes of alkaline basaltic parent rock. Then, these materials were transported to karst depressions and formed the Shirinabad clay-bauxite deposit. Manuscript profile
      • Open Access Article

        3 - Mineralogy, Geochemistry and Alteration of Ore Minerals in Glojeh Epithermal Veins, North of Zanjan
        Majid Ghasemi Siani Behzad Mehrabi Mohammad khanazizi
        The polymetallic epithermal Glojeh ore deposit is located in the middle of the Tarom-Hashtjin metallogenic province in Alborz-Azarbayejan (western Alborz). It consists of four major epithermal veins, in the South Glojeh and the North Glojeh areas. Andesitic basalt and More
        The polymetallic epithermal Glojeh ore deposit is located in the middle of the Tarom-Hashtjin metallogenic province in Alborz-Azarbayejan (western Alborz). It consists of four major epithermal veins, in the South Glojeh and the North Glojeh areas. Andesitic basalt and dacite are hosting the mineralization in the South Glojeh and the North Glojeh veins, respectively. The in Glojeh area rocks include intrusive rocks (granodiorite, granite and quartzmonzonite), diabasitic dikes, and volcanic rocks (dacite, rhyolite, andesitic basalt and tuff). Based on genetic and crossed relations of vein and vienlets, mineralization in the Glojeh occurs in three stages: (1) early stage of Cu-Au-As-Sb-Fe-bearing minerals; (2) mid stage of Pb-Zn-Cu-Cd-Ag-bearing minerals and (3) late stage of hematite-goethite-Ag-Bi-Au-Pb minerals. Mineralogy and minerals chemistry studies show that galena in stage 2 (substage 2B) have inclusions of silver bearing minerals. Important silver bearing minerals in Glojeh veins are argentite, native silver, Ag-tetrahedrite, polybasite, matildite and marrite. Gold mineralization occured in substage 1B (stage 1), and is associated with specular hematite (specularite) as native gold and in substage 3A (stage 3) as inclusions of native gold and eletrum in hematite and quartz. Alteration in Glojeh district consists of propylilitization, argillization, sericitization and silicification, that have well-developed and zoned in the around Glojeh veins and extends ≈ 30 meters into the host rocks. Chlorite geothermometry in argillic zone (stage 2) and propylitic zone (stage 3) are 275°C and 200°C, respectively. Mass balance calculations indicate that Al, Zr, Ti, Y, Nb, and HREE were immobile elements during alteration. Manuscript profile
      • Open Access Article

        4 - Study of original carbonate mineralogy of the Qom Formation using petrography and geochemical evidence in celestite ore section, Madabad, south of Zanjan
                 
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper More
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper Red Formation. In the Madabad celestite deposit (south of Zanjan), the Qom Formation is composed of 190 m of medium to thick-bedded and massive limestone, marly limestone and marl. Five main microfacies are identified in the limestone units of the Qom Formation in the Madabad area. These microfacies probably were deposited on a shelf carbonate platform. Petrographic studies suggest original calcite mineralogy for limestone units of the Qom Formation in the Madabad area. Geochemical studies (Ca, Mg, Na, Sr, Mn and Fe) also represent the original calcite mineralogy in a closed diagenetic system with low dissolution rates. These evidence show significant role of fractures rather than diagenetic processes such as dissolution for increasing the reservoir quality of the Qom Formation for the oil and gas fields (such as Serajeh and Alborz) of central Iran. Manuscript profile
      • Open Access Article

        5 - Study of original carbonate mineralogy of the Qom Formation using petrography and geochemical evidence in celestite ore section, Madabad, south of Zanjan
          Afshin  Zohdi Hossein Kouhestani    
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper More
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper Red Formation. In the Madabad celestite deposit (south of Zanjan), the Qom Formation is composed of 190 m of medium to thick-bedded and massive limestone, marly limestone and marl. Five main microfacies are identified in the limestone units of the Qom Formation in the Madabad area. These microfacies probably were deposited on a shelf carbonate platform. Petrographic studies suggest original calcite mineralogy for limestone units of the Qom Formation in the Madabad area. Geochemical studies (Ca, Mg, Na, Sr, Mn and Fe) also represent the original calcite mineralogy in a closed diagenetic system with low dissolution rates. These evidence show significant role of fractures rather than diagenetic processes such as dissolution for increasing the reservoir quality of the Qom Formation for the oil and gas fields (such as Serajeh and Alborz) of central Iran. Manuscript profile
      • Open Access Article

        6 - Study of original carbonate mineralogy of the Qom Formation using petrography and geochemical evidence in celestite ore section, Madabad, south of Zanjan
         
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper More
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper Red Formation. In the Madabad celestite deposit (south of Zanjan), the Qom Formation is composed of 190 m of medium to thick-bedded and massive limestone, marly limestone and marl. Five main microfacies are identified in the limestone units of the Qom Formation in the Madabad area. These microfacies probably were deposited on a shelf carbonate platform. Petrographic studies suggest original calcite mineralogy for limestone units of the Qom Formation in the Madabad area. Geochemical studies (Ca, Mg, Na, Sr, Mn and Fe) also represent the original calcite mineralogy in a closed diagenetic system with low dissolution rates. These evidence show significant role of fractures rather than diagenetic processes such as dissolution for increasing the reservoir quality of the Qom Formation for the oil and gas fields (such as Serajeh and Alborz) of central Iran. Manuscript profile
      • Open Access Article

        7 - Study of original carbonate mineralogy of the Qom Formation using petrography and geochemical evidence in celestite ore section, Madabad, south of Zanjan
        Mahsa Noori
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper More
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper Red Formation. In the Madabad celestite deposit (south of Zanjan), the Qom Formation is composed of 190 m of medium to thick-bedded and massive limestone, marly limestone and marl. Five main microfacies are identified in the limestone units of the Qom Formation in the Madabad area. These microfacies probably were deposited on a shelf carbonate platform. Petrographic studies suggest original calcite mineralogy for limestone units of the Qom Formation in the Madabad area. Geochemical studies (Ca, Mg, Na, Sr, Mn and Fe) also represent the original calcite mineralogy in a closed diagenetic system with low dissolution rates. These evidence show significant role of fractures rather than diagenetic processes such as dissolution for increasing the reservoir quality of the Qom Formation for the oil and gas fields (such as Serajeh and Alborz) of central Iran. Manuscript profile
      • Open Access Article

        8 - Study of original carbonate mineralogy of the Qom Formation using petrography and geochemical evidence in celestite ore section, Madabad, south of Zanjan
          Afshin  Zohdi Hossin Kohestani Ghsem Nabatian Mir Ali Asghar Mokhtari
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper More
        The Qom Formation is the only hydrocarbon reservoir in the central Iran sedimentary basin. In most parts of the central Iran, the Qom Formation conformably overlies the Lower Red Formation with an erosional discontinuity and is in turn conformably overlain by the Upper Red Formation. In the Madabad celestite deposit (south of Zanjan), the Qom Formation is composed of 190 m of medium to thick-bedded and massive limestone, marly limestone and marl. Five main microfacies are identified in the limestone units of the Qom Formation in the Madabad area. These microfacies probably were deposited on a shelf carbonate platform. Petrographic studies suggest original calcite mineralogy for limestone units of the Qom Formation in the Madabad area. Geochemical studies (Ca, Mg, Na, Sr, Mn and Fe) also represent the original calcite mineralogy in a closed diagenetic system with low dissolution rates. These evidence show significant role of fractures rather than diagenetic processes such as dissolution for increasing the reservoir quality of the Qom Formation for the oil and gas fields (such as Serajeh and Alborz) of central Iran. Manuscript profile
      • Open Access Article

        9 - Occurrence of copper mineralization of Abgareh deposit based on geology, mineralogy and geochemical evidences, south of Damghan
        Raziyeh  Mahabady Mohammad Hassanpour sedghi
        The Torud-Chah Shirin volcanic-sedimentary arc, in the south of Kavir-e-Chah Jam depression (SE of Damghan), hosted many Pb, Zn, Cu, Ag and Au occurrences and deposits. Abgareh copper deposit is located in the northeastern part. Field and petrographic studies indicate t More
        The Torud-Chah Shirin volcanic-sedimentary arc, in the south of Kavir-e-Chah Jam depression (SE of Damghan), hosted many Pb, Zn, Cu, Ag and Au occurrences and deposits. Abgareh copper deposit is located in the northeastern part. Field and petrographic studies indicate that deposit area consist of andesite, basaltic andesite and basalt rocks and to a lesser extent crystal tuffs with a middle–upper Eocene age. The rocks are of high-K, calc-alkaline to shoshonitic in nature, and are formed in a magmatic arc setting in a subduction zone. According to the field observations and mineralogical studies, the mineralization in the region occurred in two stages: hypogene and supergene and weathering. Hypogen zone minerals are generally pyrite, chalcopyrite and bornite, while chalcocite, covellite, malachite and chrysocolla are considered as the main minerals in the supergene zone. Fractures resulting from faults in the rocks of the region created a favorable location for the influence of hydrothermal solution and it is considered as the main controller of mineralization. Most of the textures observed in the mineralization include vein-veinlets, open space filling, radial, replacement and disseminated forms. Geochemical studies indicate that copper has the most relative correlation with silver. Since silver has not been found as an independent crystalline phase, therefore copper was replaced by silver in chalcopyrite and chalcocite. Compared with chondrite and primitive mantle normalizing diagrams, the studied rocks show significant enrichment with respect to LREE and LILE and depletion in HREE and HFSE and negative anomalies in Ti and Nb elements. Based on the relevant diagrams, differential crystallization of mantle rocks had the essential role in the evolution of the studied rocks which were probably derived from enriched mantle. Based on petrography, structural control of mineralization, alteration type and its extention and simple mineralogy, it can be concluded that mineralization at Abgareh district has characteristics of an individual mineralization system. This system is related to evolution of hydrothermal fluid mineralization resulted in vein-type Cu mineralization. Manuscript profile
      • Open Access Article

        10 - Mineralogy, geochemistry, and fluid inclusion characteristics of the Madanjoo skarn iron deposit, Sangan mining district, NE Iran
        M. Fotovat Jami Masoud Alipour-Asll
        The Madanjoo prospect is one of the eastern anomalies in the Sangan mining district. This area is located in the eastern part of the Cenozoic Alborz volcanic-plutonic arc. The geology of the area includes Jurassic shaly sandstone, lime mudstone, and sandstone, Upper Cre More
        The Madanjoo prospect is one of the eastern anomalies in the Sangan mining district. This area is located in the eastern part of the Cenozoic Alborz volcanic-plutonic arc. The geology of the area includes Jurassic shaly sandstone, lime mudstone, and sandstone, Upper Cretaceous limestone and dolomitic limestone, and Upper Eocene tuff and lava flow sequences, Middle Eocene skarn rocks, and Quaternary sediments. The most important occurrence in the Madanjoo area is the penetration of ferrous fluids into terrigenous and carbonate formations, skarnization, and iron mineralization, which is characterized by the presence of magnetite and calcsilicates minerals. based on type and frequency of calcsilicates, The skarn zones include olivine-pyroxene-garnet skarn, garnet-pyroxene skarn, garnet skarn, pyroxene-wollastonite-magnetite skarn, magnetite skarn, phlogopite skarn, tremolite-actinolite skarn, and epidote skarn. Iron mineralization occurred as massive, banded, vein-veinlets, breccia, and disseminated forms mostly in the Upper Cretaceous limestone and dolomite rocks and along NE-SW fault zone trend. Magnetite is the main ore mineral accompanied with pyrite, chalcopyrite, pyrrhotite, and secondary iron minerals. The composition of the Madanjoo garnet, pyroxene, and olivine are andradite-grossular (mostly andradite), diopside-hedenbergite (mostly diopside), and forsterite, respectively. Thermobarometry study based on pyroxene chemistry show that pyroxenes crystallized in temperature range of 458-689 °C, pressure of 2.21 kb, and depth range of 1-2.5 km. Three main paragenetic stages of skarn formation and ore deposition were recognized in the Madanjoo deposit: (1) a prograde stage developed with prograde garnet and pyroxene forming at 330° to 410 °C with a fluid salinity between 33 to 58 wt.% NaCl equivalent, (2) a retrograde garnet, tremolite- actinolite, and calcite which formed at 120° to 300 °C with fluid salinity of 16 to 49 wt.% NaCl equivalent, and (3) a post-ore stage with calcite and minor quartz veins that developed at 95° to 190 °C with salinity range of 2 to 15 wt.% NaCl equivalent. Possible iron ore formation mechanisms include: fluid mixing, boiling, and dilution with meteoric waters along with decreasing temperature. Finally, the Madanjoo iron mineralization is introduced as a magnesian exoskarn iron deposit. Manuscript profile